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Abstract

In this chapter, we examine and compare the most prevalent modeling techniques in the credit industry, Linear Discriminant Analysis, Logistic Analysis and the emerging technique of Neural Network modeling. K-S Tests and Classification Rates are typically used in the industry to measure the success in predictive classification. We examine those two methods and a third, ROC Curves, to determine if the method of evaluation has an influence on the perceived performance of the modeling technique. We found that each modeling technique has its own strengths, and a determination of the “best” depends upon the evaluation method utilized and the costs associated with misclassification. 

Subject Areas: Model Development, Model Evaluation and Credit Scoring.

Introduction

The popularity of consumer credit products represents both a risk and an opportunity for credit lenders.   The credit industry has experienced decades of rapid growth as characterized by the ubiquity of consumer financial products such as credit cards, mortgages, home equity loans, auto loans, interest-only loans, etc.  In 1980, there was $55.1 billion in outstanding unsecured revolving consumer credit in the U.S.  In 2000, that number had risen to $633.2 billion.    However, the number of bankruptcies filed per 1,000 U.S. Household increased from 1 to 5 over the same period1.  

In an effort to maximize the opportunity to attract, manage, and retain profitable customers and minimize the risks associated with potentially unprofitable customers, lenders have increasingly turned to modeling to facilitate a holistic approach to Customer Relationship Management (CRM).  In the consumer credit industry, the general framework for CRM includes product planning, customer acquisition, customer management, collections and recovery (Figure 1).  Prediction models have been used extensively to support each stage of this general CRM strategy.  

Figure 1: Stages of Customer Relationship Management in Credit Lending
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For example, customer acquisition in credit lending is often accomplished through model-driven target marketing.  Data on potential customers, which can be accessed from credit bureau files and a firm’s own databases, is used to predict the likelihood of response to a solicitation.  Risk models are also utilized to support customer acquisition efforts through the prediction of a potential customer’s likelihood of default.  Once customers are acquired, customer management strategies require careful analysis of behavior patterns.  Behavioral models are developed using a customer’s transaction history to predict which customers may default or attrite. Based upon some predicted value, firms can then efficiently allocate resources for customer incentive programs or credit line increases.  Predictive accuracy in this stage of customer management is important because effectively retaining customers is significantly less expensive than acquiring new customers.  Collections and recovery is, unfortunately, a ubiquitous stage in a credit lender’s CRM strategy, where lenders develop models to predict a delinquent customer’s likelihood of repayment.  Other models used by lenders to support the overall CRM strategy may involve bankruptcy prediction, fraud prediction and market segmentation.

Not surprisingly, the central concern of modeling applications in each stage is improving predictive accuracy.  An improvement of even a fraction of a percent can translate into significant savings or increased revenue.  As a result, many different modeling techniques have been developed, tested and refined.  These techniques include both statistical (e.g., Linear Discriminant Analysis, Logistic Analysis) and non-statistical techniques (e.g., Decision Trees, k-Nearest Neighbor, Cluster Analysis, Neural Networks).  Each technique utilizes different assumptions and may or may not achieve similar results based upon the context of the data.  Because of the growing importance of accurate prediction models, an entire literature exists which is dedicated to the development and refinement of these models.   However, developing the model is really only half the problem.

Researchers and analysts allocate a great deal of time and intellectual energy to the development of prediction models to support decision-making.  However, too often insufficient attention is allocated to the tool(s) used to evaluate the model(s) in question.  The result is that accurate prediction models may be measured inappropriately based upon the information available regarding classification error rate and the context of application.  In the end, poor decisions are made, because an incorrect model was selected, using an inappropriate evaluation method.

This paper addresses the dual issues of model development and evaluation.  Specifically, we attempt to answer the questions, “Does model development technique impact prediction accuracy?”  And “How will model selection vary based upon the selected evaluation method?”  These questions will be addressed within the context of consumer risk prediction – a modeling application supporting the first stage of a credit lender’s CRM strategy, customer acquisition.  All stages of the CRM strategy need to be effectively managed to increase a lender’s profitability.  However, accurate prediction of a customer’s likelihood of repayment at the point of acquisition is particularly important because regardless of the accuracy of the other “downstream” models, the lender may never achieve targeted risk/return objectives if incorrect decisions are made in the initial stage.   Therefore, understanding how to develop and evaluate models that predict whether potential customers are “good” or “bad” credit risks is critical to managing a successful CRM strategy.  

The remainder of the paper will be organized as follows.  In the next section, we give a brief overview of three modeling techniques for used prediction in the credit industry.  Since the dependent variable of concern is categorical (e.g., “good” credit risk versus “bad” credit risk), the issue is one of binary classification.  We then discuss the conceptual differences among three common methods of model evaluation and rationales for when they should and should not be used.  We illustrate model application and evaluation through an empirical example using the techniques and methods described in the paper.  Finally, we conclude the paper with a discussion of our results and propose concepts for further research. 

Common Modeling Techniques
As mentioned above, modeling techniques can be roughly segmented into two classes: statistical and non-statistical.   The first technique we utilized for our empirical analysis, linear discriminant analysis (LDA), is one of the earliest formal modeling techniques.  LDA has its origins in the discrimination methods suggested by Fisher (1936). Given its dependence on the assumptions of multivariate normality, independence of predictor variables, and linear separability, LDA has been criticized as having restricted applicability.   However, the inequality of covariance matrices, as well as the non-normal nature of the data, which is common to credit applications, may not represent critical limitations of the technique (Reichert et al., 1983).  Although it is one of the simpler modeling techniques, LDA continues to be widely used in practice.    

The second technique we utilized for this paper, logistic regression analysis, is considered the most common technique of model development for initial credit decisions (Thomas, et al., 2002).  For the binary classification problem (i.e., prediction of “good” versus “bad”), logit analysis takes a linear combination of the descriptor variables and transforms the result to lie between 0 and 1, to equate to a probability.

Where LDA and logistic analysis are statistical classification methods with lengthy histories, neural network-based classification is a non-statistical technique, which has developed as a result of improvements in desktop computing power.  Although neural networks originated in attempts to model the processing functions of the human brain, the models currently in use have increasingly sacrificed neurological rigor for mathematical expediency (Vellido, et al., 1999).  Neural networks are utilized in a wide variety of fields and in a wide variety of applications, including the field of finance and specifically, the prediction of consumer risk.  In their survey of neural network applications in business, Vellido et al. (1999), provide a comprehensive overview of empirical studies of the efficacy of neural networks in credit evaluation and decision-making.  They highlight that neural networks did outperform “other” (both statistical and non-statistical) techniques, but not consistently.  However, in the review undertaken by Vellido et al. (1999), as in many papers that compare modeling techniques, significant discussion is dedicated to the individual techniques, and less discussion (if any) is dedicated to the tool(s) used for evaluation.

Methods of Model Evaluation

As stated in the previous section, a central concern of modeling techniques is an improvement in predictive accuracy.  In customer risk classification, an improvement in predictive accuracy of even a fraction of a percentage can translate into significant savings.  However, how can the analyst know if one model represents an improvement over a second model?  The answer to this question may change based upon the selection of evaluation method.  As a result, analysts who utilize prediction models for binary classification, have a need to understand the circumstances under which each evaluation method is most appropriate. 

In the context of predictive binary classification models, one of four outcomes is possible: (i) a true positive – e.g., a good credit risk is classified as “good”; (ii) a false positive – e.g., a bad credit risk is classified as “good”; (iii) a true negative – e.g., bad credit risk is classified as “bad”; (iv) a false negative – e.g., a good credit risk is classified as “bad”. The N-class prediction models are significantly more complex and outside of the scope of this paper.  For an examination of the issues related to N-class prediction models, see Taylor and Hand (1999).  

In principle, each of these outcomes would have some associated “loss” or “reward”.  In a credit-lending context, a true positive “reward” might be a qualified person obtaining a needed mortgage with the bank reaping the economic benefit of making a correct decision.  A false negative “loss” might be the same qualified person being turned down for a mortgage.   In this instance, the bank not only has the opportunity cost of losing a good customer, but also the possible cost of increasing its competitor’s business. 

In principle, it is often assumed that the two types of incorrect classification – false positives and false negatives – incur the exact same loss (Hand, 2001).  If this is truly the case, then a simple “global” classification rate could be used for model evaluation.  For example, lets say that a hypothetical classification model produced the following confusion matrix:

	
	True Good
	True Bad
	Total

	Predicted Good
	650
	50
	700

	Predicted Bad
	200
	100
	300

	Total
	850
	150
	1000


This model would have a global classification rate of 75% (650/1000 + 100/1000).  This simple metric is reasonable if the costs associated with each error are known (or assumed) to be the same.  If this were the case, the selection of a “better” model would be easy – the model with the highest classification rate would be selected.  Even if the costs were not equal, but at least understood with some degree of certainty, the total loss associated with the selection of one model over another could still be easily evaluated based upon this confusion matrix.  For example, the projected loss associated with use of a particular model can be represented by the loss function:

    L=π0f0c0+ π1f1c1 




(1)
where πi is the probability that an object comes from class i (the prior probability), fi is the probability of misclassifying a class i object, and ci is the cost associated with misclassifying an observation into that category and, for example, 0 indicates a “bad” credit risk and 1 indicates a “good” credit risk.  Assessment of predictive accuracy would then be based upon the extent to which this function is minimized.  West (2000) uses a similar cost function to evaluate the performance of several statistical and non-statistical modeling techniques, including five different neural network models.  Although the author was able to select a “winning” model based upon reasonable cost assumptions, the “winning” model would differ as these assumptions changed.   

A second issue when using a simple classification matrix for evaluation is the problem that can occur when evaluating models dealing with rare events.  If the prior probability of an occurrence were very high, a model would achieve a strong prediction rate if all observations were simply classified into this class.  However, when a particular observation has a low probability of occurrence (e.g., cancer, bankruptcy, tornadoes, etc.), it is far more difficult to assign these low probability observations into their correct class (where possible, this issue of strongly unequal prior probabilities can be addressed during model development or network training by contriving the two classes to be of equal size, but this may not always be an option).  The difficulty of accurate rare class assignment is not captured if the simple global classification is used as an evaluation method (Gim, 1995).  Because of the issue of rare events and imperfect information, the simple classification rate should very rarely be used for model evaluation.  However, a quick scan of papers which evaluate different modeling techniques will reveal that this is the most frequently utilized (albeit weakest due to the assumption of perfect information) method of model evaluation.  
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One of the most common methods of evaluating predictive binary classification models in practice is the Kolmogorov-Smirnov statistic or K-S test.  The K-S test measures the distance between the distribution functions of the two classifications (e.g., good credit risks and bad credit risks).  The score that generates the greatest separability between the functions is considered the threshold value for accepting or rejecting a credit application.  The predictive model producing the greatest amount of separability between the two distributions would be considered the superior model.  A graphical example of a K-S test can be seen in Figure 2.  In this illustration, the greatest separability between the two distribution functions occurs at a score of approximately .7.  Using this score, if all applicants who scored above .7 were accepted and all applicants scoring below .7 were rejected, then approximately 80% of all “good” applicants would be accepted, while only 35% of all “bad” applicants would be accepted.  The measure of separability, or the K-S test result would be 45% (80%-35%).    
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Hand (2002) criticizes the K-S test for many of the same reasons outlined for the simple global classification rate.  Specifically, the K-S test assumes that the relative costs of the misclassification errors are equal.  As a result, the K-S test does not incorporate relevant information regarding the performance of classification models (i.e., the misclassification rates and their respective costs).  The measure of separability then becomes somewhat hollow.   

In some instances, the researcher may not have any information regarding costs of error rates, such as the relative costs of one error type versus another.  In almost every circumstance, one type of misclassification will be considered more serious than another.  However, a determination of which error is the more serious is generally less well defined or may even be in the eye of the beholder.  For example, in a highly competitive business environment is a worse mistake to turn away a potentially valuable customer to a competitor?  Or is a worse mistake to accept a customer that does not meet financial expectations?  The answers are not always straightforward.  As a result, the cost function outlined above, may not be applicable.

One method of evaluation, which enables a comprehensive analysis of all possible error severities, is the ROC curve.  The “Receiver Operating Characteristics” curve was first applied to assess how well radar equipment in WWII distinguished random interference or “noise” from the signals that were truly indicative of enemy planes (Swets, et al., 2000).  ROC curves have since been used in fields ranging from electrical engineering and weather prediction to psychology and are used almost ubiquitously in the literature on medical testing to determine the effectiveness of medications.  The ROC curve plots the sensitivity or “hits” (e.g., true positives) of a model on the vertical axis against                 1-specificity or “false alarms” (e.g., false positives) on the horizontal axis.  The result is a bowed curve rising from the 45 degree line to the upper left corner – the sharper the bend and the closer to the upper left corner, the greater the accuracy of the model.  The area under the ROC curve is a convenient way to compare different predictive binary classification models when the analyst or decision maker has no information regarding the costs or severity of classification errors. This measurement is equivalent to the Gini index (Thomas et al., 2002) and the Mann-Whitney-Wilcoxon test statistic for comparing two distributions (Hanley and McNeil, 1982, 1983) and is referred in the literature in many ways, including “AUC”, the c-statistic, and “θ” (we will use the “θ” term for the remainder of this paper to describe this area).   For example, if observations were assigned to two classes at random, such that there was equal probability of assignment in either class, the ROC curve would follow a 45-degree line emanating from the origin.  This would correspond to θ = .5.  A perfect binary classification, θ=1, would be represented by an ROC “curve” that followed the y-axis from the origin to the point 0,1 and then followed the top edge of the square.  The metric θ can be considered as an averaging of the misclassification rates over all possible choices of the various classification thresholds.  In other words, θ is an average of the diagnostic performance of a particular model over all possible values for the relative misclassification severities (Hand, 2001).  The interpretation of θ, where a “good” credit risk is scored as a 1 and a “bad” credit risk is scored as a 0, is the answer to the question – “Using this model, what is the probability that a truly “good” credit risk will be scored higher than a “bad” credit risk”?  Formulaically, θ can be represented as,

                  θ = ∫F(p|0)dF(p|1)dp,


        (2) 

where F(p|0) is the distribution of the probabilities of assignment in class 0 (classification of “bad” credit risk) and F(p|1) is the distribution of the probabilities of assignment in class 1 (classification of “good” credit risk).  An important limitation to note when using θ, is that in practice, rarely is nothing is known about the relative cost or severity of misclassification errors. Similarly, it is rare that are all threshold values relevant.  

In this section and the section previous, we have outlined the issues and considerations related to both model development and model evaluation.  Based upon this discussion, we will utilize empirical analysis to address our two research questions:

1. Does model development technique impact prediction accuracy?

2. How will model selection vary based upon the selected evaluation method?

Methodology

A real world data set was used to test the predictive accuracy of three binary classification models, consisting of data on 14,042 applicants for car loans in the United States.  The data represents applications made between June 1st, 1998, and June 30th, 1999. For each application, data on 65 variables were collected.  These variables could be categorized into two general classes – data on the individual (e.g., other revolving account balances, whether they rent or own their residence, bankruptcies, etc) and data on the transaction (e.g., miles on the vehicle, vehicle make, selling price, etc).  A complete list of all variables is included in Appendix A.  From this dataset, 9,442 individuals were considered to have been creditworthy applicants (i.e., “good”) and 4,600 were considered to have been not creditworthy (i.e., “bad”), on the basis of whether or not their accounts were charged off as of December 31st, 1999. No confidential information regarding applicants’ names, addresses, social security number, or any other data elements that would indicate identity were used in this analysis.

An examination of each variable relative to the binary dependent variable (creditworthiness) found that most of the relationships were non-linear.   For example, as can be seen in Figure 4, the relationship between the number of auto trades (i.e., the total number of previous or current auto loans), and an account’s performance is not linear; the ratio of “good” performing accounts to “bad” performing accounts increases until the number of auto trades reaches the 7-12 range.  However, after this range, the ratio decreases.  
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The impact of this non-linearity on model development is clear – the overall classification accuracy of the model would decrease if the entire range of 0-18+ auto trades was included as a single variable.  In other words, the model would be expected to perform well in some ranges of the variable but not in others.  To address this issue, we used frequency tables for each variable, continuous and categorical, to create multiple dummy variables for each original variable.  Using the auto trade variable above as an example, we converted this variable into 4 new variables – 0 auto trades, 1-6 auto trades, 7-12 auto trades and 13+ auto trades. We then assigned a value of “1” if the observation fell into the specified range and a value of “0” if they did not.       

Prior to analysis, the data was divided into a testing file, representing 80% of the data set and a validation file, representing 20% of the data set.  The LDA and logistic analysis models were developed using the SAS system (v.8.2).

There are currently no established guiding principles to assist the analyst in developing a neural network model.  Since many factors including hidden layers, hidden nodes, training methodology can affect network performance, the best network is generally developed through experimentation – making it somewhat more art than science (Zhang, et al., 1999).  

Using the basic MLP network model, the inputs into our classification networks were simply the same predictor variables utilized for the LDA and logistic regression models outlined above.  Although non-linearity is not an issue with neural network models, using the dummy variable data versus the raw data eliminated issues related to scaling (we did run the same neural network models with the raw data, with no material improvement in classification accuracy).  Because our developed networks were binary, we required only a single output layer.  The selection of the number of hidden nodes is effectively the “art” in neural network development.  Although some heuristics have been proposed as the basis of determining the number of nodes a priori (e.g., n/2, n, n+1, 2n+1), none have been shown to perform consistently well (Zhang, et al., 1999).  To see the effects of hidden nodes on the performance of neural network models, we use 10 different levels of hidden nodes ranging from 5 to 50, in increments of 5, allowing us to include the effects of both small and larger networks.  Backpack® v. 4.0 was used for neural network model development.

We split our original testing file, which was used for the LDA and logistic model development, into a separate training file (60% of the complete data set) and a testing file (20% of the complete data set).   The same validation file used for the first two models was also applied to validation of the neural networks.  Because neural networks cannot guarantee a global solution, we attempted to minimize the likelihood of being trapped in a local solution through training the network 100 times using epochs (e.g., the number of observations from the training set presented to the network before weights are updated) of size 12 with 200 epochs between tests. 

Results

The results for the different modeling techniques using the three model evaluation methods are summarized in Table 1.  As expected, selection of a “winning” model is not straightforward; model selection will vary based upon the two main issues highlighted above – the costs of misclassification errors and the problem domain.

Table 1: Comparison of models using multiple methods of evaluation
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Modeling Technique


Classification Rate
    Theta4
         K-S Test



                   
      Goods1     Bads2     Overall3
Linear Discriminant Analysis
        73.91%      43.40%
  59.74%
     68.98%

19%


Logistic Regression

         70.54%      59.64%      69.45%     68.00%

24%

Neural Networks:

5 Hidden Nodes


        63.50%      56.50%      58.88%     63.59%

38%

10 Hidden Nodes


        75.40%      44.50%      55.07%     64.46%

11%

15 Hidden Nodes


        60.10%      62.10%       61.40%    65.89%

24%

20 Hidden Nodes


        62.70%      59.00%      60.29%     65.27%

24%

25 Hidden Nodes


        76.60%      41.90%      53.78%     63.55%

16%

30 Hidden Nodes


        52.70%       68.50%
  63.13%     65.74%

22%

35 Hidden Nodes


        60.30%      59.00%       59.46%     63.30%

22%

40 Hidden Nodes


        62.40%       58.30%      59.71%     64.47%

17%

45 Hidden Nodes


        54.10%       65.20%      61.40%     64.50%

31%

50 Hidden Nodes


        53.20%       68.50%
  63.27%     65.15%

37%
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1. The number of “good” applications correctly classified as “good”.

2. The number of “bad” applications correctly classified as “bad”.

3. The overall correct global classification rate.

4. The area under the ROC Curve.
If the misclassification costs are known with some confidence to be equal, the global classification rate could be utilized as an appropriate evaluation method.  Using this method, the logistic regression model outperforms the other models, with a global classification rate of 69.45%.  Five of the ten neural network models outperformed the traditional LDA technique, based upon this method of evaluation.

If costs are known with some degree of certainty, a “winning” model could be selected based upon the classification rates of “goods” and “bads”.  For example, if a false negative error (i.e., classifying a true good as bad) is considered to represent a greater misclassification cost than a false positive (i.e., classifying a true bad as good), then the neural network with 25 hidden nodes would represent the preferred model, outperforming both of the traditional statistical techniques.  Alternatively, if a false positive error is considered to represent a greater misclassification cost, then the neural networks with 30 or 50 hidden nodes would be selected, again, outperforming the two statistical techniques.  

If the analyst is most concerned with the models’ ability to provide a separation between the scores of good applicants and bad applicants, the K-S test is the traditional method of model evaluation.  Using this test, again, a neural network would be selected – the network with 5 hidden nodes.  

The last method of evaluation assumes the least amount of available information. The θ measurement represents the integration of the area under the ROC curve and accounts for all possible iterations of relative severities of misclassification errors.  In the context of the real world problem domain used to develop the eight models for this paper, prediction of creditworthiness of applicants for auto loans, the decision makers would most likely have some information regarding misclassification costs, and therefore θ would probably not have represented the most appropriate model evaluation method.  However, if the available data was used, for example, as a proxy to classify potential customers for a completely new product offering, where no pre-existing cost data was available, and the respective misclassification costs were less understood, θ would represent a very appropriate method of evaluation.  From this data set, if θ was chosen as the method of evaluation, the LDA model would have been selected, with a θ of 68.98.  A decision maker would interpret θ for the logistic model as follows – If I select a pair of good and bad observations at random, 69% of the time, the “good” observation will have a higher score than the “bad” observation.  A comparison of the ROC curves for the three models with the highest θ values is depicted in Figure 4. 

[image: image7.emf]Figure 3:  Ratio of Good-to-Bad Account Performance by 

Total Number of Auto Trades

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 1 to 6 7 to 12 13 to 18

Total Number of Auto Trades

Ratio of 

Good:Bad Accounts

Discussion

Accurate predictive modeling represents a domain of interesting and important applications.  The ability to correctly predict the risk associated with credit applicants or potential customers has tremendous consequences for the execution of effective CRM strategies in the credit industry.  Researchers and analysts spend a great deal of time constructing prediction models, with the objective of minimizing the implicit and explicit costs of misclassification errors.  Given this objective, and the benefits associated with even marginal improvements, both researchers and practitioners have emphasized the importance of modeling techniques.  However, we believe that this emphasis has been somewhat misplaced, or at least misallocated.  Our results, and the empirical results of others, have demonstrated that no predictive modeling technique can be considered superior in all circumstances.  As a result, at least as much attention should be allocated to the selection of model evaluation method as is allocated to the selection of modeling technique.  

In this paper, we have explored three common evaluation methods – classification rate, the Kolmogorov-Smirnov statistic, and the ROC curve.  Each of these evaluation methods can be used to assess model performance.  However, the selection of which method to use is contingent upon the information available regarding misclassification costs, and the problem domain.  If the misclassification costs are considered to be equal, then a straight global classification rate can be utilized to assess the relative performance of competing models.  If the costs are unequal, but known with certainty, then a simple cost function can be applied using the costs, the prior probabilities of assignment and the probabilities of misclassification.  Using a similar logic, the K-S test can be used to evaluate models based upon the separation of each class’s respective distribution function – in the context of predicting customer risk, the percentage of “good” applicants is maximized while the percentage of “bad” applicants is minimized, with no allowance for relative costs.  Where no information is available, the ROC curve and the θ measurement represent the most appropriate evaluation method.  Because this last method incorporates all possible iterations of misclassification error severities, many irrelevant ranges will be included in the calculation.  

Adams and Hand (1999) have developed an alternative evaluation method, which may address some of the issues outlined above, and provide researchers with another option for predictive model evaluation – the LC (loss comparison) index.  Specifically, the LC index assumes only knowledge of the relative severities of the two costs.  Using this simple, but realistic estimation, the LC index can be used to generate a value which aids the decision maker in determining the model which performs best within the established relevant range.   However, the LC Index has had little empirical application or dedicated research attention to date.  It represents an opportunity for further research, refinement and testing.

Clearly no model evaluation method represents a panacea for researchers, analysts or decision-makers.  As a result, an understanding of the context of the data and the problem domain are critical for selection, not just of a modeling technique, but also of a model evaluation method.

Appendix A:  Listing of original variables in data set


Variable Name

Variable Label
1. ACCTNO


Account Number

2. AGEOTD


Age of Oldest Trade

3. BKRETL


S&V Book Retail Value

4. BRBAL1


# of Open Bank Rev.Trades with Balances>$1000

5. CSORAT


Ratio of Currently Satisfactory Trades:Open Trades

6. HST03X


# of Trades Never 90DPD+

7. HST79X


# of Trades Ever Rated Bad Debt

8. MODLYR


Vehicle Model Year

9. OREVTR


# of Open Revolving Trades

10. ORVTB0


# of Open Revolving Trades With Balance >$0

11. REHSAT


# of Retail Trades Ever Rated Satisfactory

12. RVTRDS


# of Revolving Trades

13. T2924X


# of Trades Rated 30 DPD+ in the Last 24 Months

14. T3924X


# of Trades Rated 60 DPD+ in the Last 24 Months

15. T4924X


# of Trades Rated 90 DPD+ in the Last 24 Months

16. TIME29


Months Since Most Recent 30 DPD+ Rating

17. TIME39


Months Since Most Recent 60 DPD+ Rating

18. TIME49


Months Since Most Recent 90 DPD+ Rating

19. TROP24


# of Trades Opened in the Last 24 Months

20. CURR2X


# of Trades Currently Rated 30 DPD

21. CURR3X


# of Trades Currently Rated 60 DPD

22. CURRSAT


# of Trades Currently Rated Satisfactory

23. GOOD



Performance of Account

24. HIST2X


# of Trades Ever Rated 30 DPD

25. HIST3X


# of Trades Ever Rated 60 DPD

26. HIST4X


# of Trades Ever Rated 90 DPD

27. HSATRT


Ratio of Satisfactory Trades to Total Trades

28. HST03X


# of Trades Never 90 DPD+

29. HST79X


# of Trades Ever Rated Bad Debt

30. HSTSAT


# of Trades Ever Rated Satisfactory

31. MILEAG


Vehicle Mileage

32. OREVTR


# of Open Revolving Trades

33. ORVTB0


# of Open Revolving Trades With Balance >$0

34. PDAMNT


Amount Currently Past Due

35. RVOLDT


Age of Oldest Revolving Trade

36. STRT24


Sat. Trades:Total Trades in the Last 24 Months

37. TIME29


Months Since Most Recent 30 DPD+ Rating

38. TIME39


Months Since Most Recent 60 DPD+ Rating

39. TOTBAL


Total Balances

40. TRADES


# of Trades

41. AGEAVG


Average Age of Trades

42. AGENTD


Age of Newest Trade

43. AGEOTD


Age of Oldest Trade

44. AUHS2X


# of Auto Trades Ever Rated 30 DPD

45. AUHS3X


# of Auto Trades Ever Rated 60 DPD

46. AUHS4X


# of Auto Trades Ever Rated 90 DPD

47. AUHS8X


# of Auto Trades Ever Repoed

48. AUHSAT


# of Auto Trades Ever Satisfactory

49. AUOP12


# of Auto Trades Opened in the Last 12 Months

50. AUSTRT


Sat. Auto Trades:Total Auto Trades

51. AUTRDS


# of Auto Trades

52. AUUTIL


Ratio of Balance to HC for All Open Auto Trades

53. BRAMTP


Amt. Currently Past Due for Revolving Auto Trades

54. BRHS2X


# of Bank Revolving Trades Ever 30 DPD

55. BRHS3X


# of Bank Revolving Trades Ever 60 DPD

56. BRHS4X


# of Bank Revolving Trades Ever 90 DPD

57. BRHS5X


# of Bank Revolving Trades Ever 120+ DPD

58. BRNEWT


Age of Newest Bank Revolving Trade

59. BROLDT


Age of Oldest Bank Revolving Trade

60. BROPEN


# of Open Bank Revolving Trades

61. BRTRDS


# of Bank Revolving Trades

62. BRWRST


Worst Current Bank Revolving Trade Rating

63. CFTRDS


# of Financial Trades

64. CUR49X


# of Trades Currently Rated 90 DPD+

65. CURBAD


# of Trades Currently Rated Bad Debt 
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